
J .  Fluid Mech. (1994), vol. 260, pp .  57-80 
Copyright 0 1994 Cambridge University Press 

57 

Topological vortex dynamics in axisymmetric 
viscous flows 

By MOGENS V. MELANDER' AND FAZLE HUSSAIN' 
Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA 

Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA 

(Received 23 March 1993 and in revised form 27 July 1993) 

The topology of vortex lines and surfaces is examined in incompressible viscous 
axisymmetric flows with swirl. We argue that the evolving topology of the vorticity 
field must be examined in terms of axisymmetric vortex surfaces rather than lines, 
because only the surfaces enjoy structural stability. The meridional cross-sections of 
these surfaces are the orbits of a dynamical system with the azimuthal circulation being 
a Hamiltonian H and with time as a bifurcation parameter p. The dependence of H on 
p is governed by the Navier-Stokes equations; their numerical solutions provide H .  
The level curves of H establish a time history for the motion of vortex surfaces, so that 
the circulation they contain remains constant. Equivalently, there exists a virtuaE 
velocityfield in which the motion of the vortex surfaces is frozen almost everywhere; 
the exceptions occur at critical points in the phase portrait where the virtual velocity 
is singular. The separatrices emerging from saddle points partition the phase portrait 
into islands; each island corresponds to a structurally stable vortex structure. By using 
the flux of the meridional vorticity field, we obtain a precise definition of reconnection: 
the transfer of$ux between islands. Local analysis near critical points shows that the 
virtual velocity (because of its singular behaviour) performs ' cut-and-connect ' of 
vortex surfaces with the correct rate of circulation transfer - thereby validating the 
long-standing viscous ' cut-and-connect ' scenario which implicitly assumes that vortex 
surfaces (and vortex lines) can be followed over a short period of time in a viscous fluid. 
Bifurcations in the phase portrait represent (contrary to reconnection) changes in the 
topology of the vorticity field, where islands spontaneously appear or disappear. Often 
such topology changes are catastrophic, because islands emerge or perish with finite 
circulation. These and other phenomena are illustrated by direct numerical simulations 
of vortex rings at a Reynolds number of 800. 

1. Introduction 
Vortex reconnection is in many ways a controversial subject. In spite of numerous 

computational (e.g. Schwarz 1985; Ashurst & Meiron 1987; Kida & Takaoka 1991) 
and experimental (Fohl & Turner 1975; Schatzle 1987; Oshima & Izutzu 1988) 
investigations, the literature offers only conflicting suggestions for the physical 
mechanism and its characteristics. Moreover, the hydrodynamical significance of the 
phenomenon is still unclear. Is it one of the following: a prime candidate for a finite- 
time singularity in the Euler equations (e.g. Pumir & Siggia 1992; Kerr 1992; Caflisch, 
Li & Shelley 1993); instrumental in turbulence cascade (Melander & Hussain 1991); 
critical to coherent structure dynamics, mixing, aerodynamic noise generation (Hussain 
1986); essential for the production of helicity (Hussain 1986); or could it be an 
inconsequential aspect of three-dimensional flows, whose relevant characteristics can 
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be obtained by other means? Even the nature of vortex reconnection is a matter of 
debate. Is it essentially a large-scale phenomenon, or intrinsically associated with the 
smallest scales? Is it viscous, essentially inviscid, or a combination of both? The 
different views are, perhaps, most clearly reflected in the various ways that the 
phenomenon has been simulated numerically : well-resolved direct numerical simu- 
lations (e.g. Kerr & Hussain 1989; Shelley, Meiron & Orszag 1993), vortex methods 
(e.g. Winkelmans & Leonard 1989), artificial viscosities (e.g. Zabusky & Melander 
1989), etc. We are of the opinion that these controversies, in part, have their roots at 
a very basic question. Namely, can and should any importance be attached to vortex 
lines and surfaces in a viscous flow? These and other questions constitute the subject 
matter of topological j u i d  mechanics; see the proceedings of two recent conferences 
(Moffatt & Tsinober 1990; Moffatt et al. 1992). In an attempt to clarify some of the 
above controversies, or at least suggest an avenue by which this may be done, we 
consider viscous axisymmetric flows. Many aspects of topological vortex dynamics are 
revealed by axisymmetric i’iows. Their simplicity highlights topological problems and 
renders them manageable. These flows contain readily identifiable topological entities 
that are meaningful to track in time - a striking concept in viscous hydrodynamics. 
Axisymmetric viscous flows enable one to pinpoint surprising phenomena that would 
otherwise easily escape attention (even detection) in more complicated three- 
dimensional flows. 

The axisymmetric geometry frees us from having to probe into three-dimensional 
flow fields via computer visualization and allows us to focus directly on the topology 
of the vorticity field. This analysis is greatly simplified by the existence of a family of 
axisymmetric vortex surfaces, which are easily obtained computationally. Math- 
ematical tools to study their structure and evolution are readily available from the 
theory of dynamical systems and bifurcations. The entire mathematical framework is 
set up and adapted to topological vortex dynamics in 92. 

In an inviscid incompressible fluid, all vortex lines are material; and in addition, the 
fluid velocity is circulation preserving (i.e. the circulation of any material vortex tube 
is constant in time). Vortex lines may still be material lines in a viscous fluid, but the 
fluid velocity is not circulation preserving; see Truesdell (1954). This fact, 
unfortunately, often leads to the prevalent view that vortex lines, surfaces, bundles, etc. 
cannot be tracked in time; and, therefore, have no physical relevance. This view is 
perhaps best expressed by Kida & Takaoka’s (1991) footnote: ‘The vortex lines are 
nothing but conceptual lines for convenience sake of visualising a vorticity field.’ We 
disagree strongly with this view, for there may exist a virtual velocity (different from the 
material velocity) which is circulation preserving over most of the flow. Newcomb 
(1 958) demonstrated that the motion of magnetic lines of force in a conducting plasma 
can, in general, be described by a virtual flux-preserving velocity field uN. Greene (1990) 
showed that Newcomb’s results can be translated to the motion of vortex lines in a 
viscous incompressible fluid. This has important implications for the problem of vortex 
reconnection. The central idea is that if a circulation (i.e. flux)-preserving virtual 
velocity field uN can be found, then we recover the inviscid vorticity theorems. Hence 
a time-history can be assigned to the motion of vortex lines in a viscousjow, for they are 
frozen in uN wherever it exists. In axisymmetric flows, uN does not exist in general ($4). 
However, another virtual velocity 6, in which the axisymmetric vortex surfaces are 
frozen, does exist almost everywhere (95). Moreover, 8 is far easier to compute than uN 
and identifies the structurally stable vortex line bundles, whose evolution can be 
followed. Also, ir correctly performs the ‘cut and connect’ (shown in figure 1) at points 
where it is singular (56).  
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FIGURE 1. ‘ Cut-and-connect ’ schematic for two-dimensional vortex reconnection. Diffusion 
annihilates vorticity, whereby lines are cut and pasted together again as illustrated in the sequence 
(4 +. (b) +. (4. 

In spite of their simple geometry, axisymmetric flows exhibit interesting phenomena 
- even surprises (see $7). Among these are reconnections where vortex lines are parallel 
rather than anti-parallel, reconnections that reverse in time, vortex lines that change 
topology without reconnection, as well as the sudden appearance and disappearance 
of entire topological structures in the vorticity field. In more general three-dimensional 
flows, similar phenomena are expected to occur, but it will require extreme care to find 
them computationally; we show why. 

Thus, viscous axisymmetric flows with swirl teach valuable lessons about topological 
vortex dynamics. The simple geometry allows a complete analysis in terms of well- 
developed mathematical tools. The relevant topological entities are easily identified 
and followed in time. Finally, these flows show how to proceed - as well as what to 
expect - in more complicated flows, where the computational, diagnostic and 
conceptual problems are much more difficult. 

2. Dynamical systems approach 
Consider a two-dimensional Hamiltonian system 

dx i3H dy - i3H 
d a  i3y’ d a  ax’ 
_-  - - -- -- 

where a is the independent variable, H ( x , y ; p )  is the Hamiltonian, and ,u is a 
bifurcation parameter. Let H have the following two properties : H vanishes as x2 + y2 
tends to infinity, and H is a smooth function of x, y and p. 

For a particular value of p, say ,uo, the phase portrait may appear as illustrated in 
figure 2(a). This sketch shows three critical points: two centres ( A  and C )  and one 
saddle (B). From a topological standpoint, the set 3 of all trajectories is naturally 
partitioned in the following way: 

(2) 3 = A  u B U  cu 6, u 6, u 3, u 3, u 3,,,. 
Here A ,  B and C are the critical points; B, and 6, are the separatrices emerging from 
B and enclosing centres A and C, respectively; 3, is the set of closed trajectories 
enclosing A ,  but not C ;  3, contains the orbits surrounding only C ;  and 3ABC holds the 
trajectories enclosing all three critical points. Following MHD terminology, 3,, 3, 
and 3,,, are called islands (e.g. Greene 1990). 

A flux is associated with the vector field (dxlda, dylda). If 9 is an orientated curve 
connecting points P and Q in the (x, y)-plane, then the f lux through 2 is 
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FIGURE 2. Carpet plots of the Hamiltonian H (top) and corresponding phase portraits (bottom) 
for three different values of the bifurcation parameter ,u. 

where n = (n5, nu) is the local unit vector normal to 9, and s is the arclength. It follows 
at once from (1) that rps = H(Q) - H(P). Each island 3 has a flux, the islundjlux r(3), 
which we define as the flux of a curve 9 intersecting all trajectories in 3 exactly once, 
the orientation of 9 being from the outside to the inside of the island. Hence, r(3) is 
positive when the orbits are clockwise. Relating this to figure 2(a), we have 

T‘(3,) = H ( A )  - H(B), r(3c) = H ( C )  - H(B) 

and T(SABC) = H(B)-H(m)  = H(B). 

Now consider the p-dependence of (1). Here the smoothness of H is important, for 
i t  guarantees structural stability for almost all values of p. The phase portrait in figure 
2(a), for example, is structurally stable. Hence, the partitioning (2) is also valid when 
p is in an open interval around ,uo. When p is increased slightly, the critical points, 
separatrices, and islands may, however, shift slightly in the phase plane; consequently, 
the island fluxes may also change slightly. Island fluxes can change by (i) annihilation, 
(ii) creation, and (iii) transfer from neighbouring islands. In the context of figure 2(a), 
we have flux annihilation in 3, if H ( A )  decreases with p ;  and flux creation, if H ( A )  
increases. Moreover, the islands 3, and 3, transfer flux to 3,Bc if H(B) increases with 
p. Thus, we de$ne reconnection as the exchange of f lux between neighbouring islands in 
a structurally stable phase portrait. Note that this is the definition commonly used in 
MHD (Greene 1988,1990). The rate a t  which an island gains flux through reconnection 
is the reconnection rute R,,,. 

The p-dependence becomes particularly interesting when individual orbits are 
labelled and tracked as the phase portrait changes. The phase portrait inherits a natural 
labelling, because H is constant along trajectories for any given value of p. Thus the 
‘p-history ’ of individual trajectories is established by following fixed levels of H. 
Crucially, the flux contained between two trajectories is preserved. We must be aware, 
though, that orbits can appear, disappear, or reconnect with others. In fact, this is 
exactly what we wish to focus on. A structurally stable phase portrait (e.g. figure 2a) 
allows the following changes when p is increase slightly. 

(i) Continuous deformation of a trajectory. As an example consider the trajectories 
labelled d and B in figure 2(a, b). Here a small change in p results in small 
deformations of d and B. 
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(ii) Creation of trajectories. This happens when a local maximum of H increases (or 
a local minimum of H decreases). 

(iii) Annihilation of trajectories. This occurs when a local minimum of H increases 
for a local maximum of H decreases). 

(iv) Joining of two trajectories into one. As an example consider the trajectories 
labelled % and 9 in figure 2(a). These trajectories are very close to the separatrices. A 
small increase in p combines $2 and 9 into a single trajectory 6 (figure 2b) through a 
small change in H(B). 

(v) Splitting of one trajectory into two. This is event (iv) occurring in reverse. 
The most likely occurrence is event (i) since it happens everywhere, except near 

critical points. Events (ii) and (iii) are more rare for they occur only at critical points 
of the centre type; these points are located well inside islands. Events (iv) and (v) are 
reconnections and represent precisely the discontinuous line evolution intuitively 
thought of as reconnection, i.e. cut-and-connect as illustrated in figure 1. 

A drastic increase in p can cause a bifurcation in the phase portrait, as indicated in 
figure 2(b, c). In this way, o!d islands are destroyed or new ones are generated, and 
thereby the topology of the vector field (dxldv, dylda) is altered. We call such an event 
a spontaneous topological change : ‘ spontaneous’, because it occurs exactly when p 
exceeds a critical value pcrit, and ‘topological’, because the topology of the phase 
portrait is different for ,u < pcrit and p > ,ucrit. If islands are created or destroyed with 
finite flux at p = pcrit, then we call the bifurcation a catastrophic topology change. 

It is important to distinguish between reconnection and a spontaneous topological 
change ; they are conceptually different phenomena. Reconnection relies on the flux 
concept, but a spontaneous topological change does not. Reconnection refers to 
topological changes in the labelled orbits of a structurally stable phase portrait and 
reflects a continuous transfer of flux between neighbouring islands. In particular, 
reconnection does not change the topology of the phase portrait. A spontaneous 
topology change, on the other hand, is a sudden change in the topology of the phase 
portrait, where entire islands are generated or destroyed. 

Vortex reconnection follows precisely the above description in some flows. To 
see this, consider the Navier-Stokes equations with translational invariance in 
one direction (say the vertical direction z). That is, u = (u(x, y), v(x, y), w(x, y)); 
p = p(x, y); o = V x u = (wz(x, y), o,(x, y), wz(x, y)). Here we immediately find that 

where ( 5 )  

and u, v are determined entirely by wz, assuming that the flow vanishes as x2 + y 2  tends 
to infinity. We observe that o, obeys the equations of two-dimensional vortex 
dynamics, because w, and wy have no effect on the evolution of w,. The dynamics of 
the in-plane vorticity follows from (4) and (5 ) ,  the latter being a passive scalar transport 
equation. Note that the in-plane vorticity is subject to both vortex stretching and 
diffusion. Comparing with the Hamiltonian system (l), we see a perfect analogy. The 
phase plane is the (x, y)-plane, and trajectories of the dynamical system are vector lines 
of the in-plane vorticity field. The Hamiltonian His the vertical velocity w ;  the flux is 

3 F L M  260 
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circulation per unit length in vertical planes; and the bifurcation parameter ,u is time 
1. Note, however, that the Hamiltonian w depends in a complicated manner on the 
bifurcation parameter t ,  namely through the diffusive scalar transport equation (5) 
with the velocity field determined by (6). Interestingly, this analogy between a fluid 
mechanical problem and a parameter-dependent dynamical system suggest how a time 
history of vortex lines in a viscous fluid can be established in a meaningful way. 

3. Governing equations for axisymmetric flows 
In axisymmetric geometry, the pressure, velocity, and vorticity depend only on r and 

z.  Therefore, the governing equations for a viscous, constant-property, incompressible 
flow can be expressed in terms of three variables: $, 7 and 5. Here $ gives the 
meridional flow 

7 = oo/r = (1 /r2) a2$/ar2 - ( l/r3) a$/& + ( l/r2) a2@/azz ; 
gives the axisymmetric vortex surfaces, because 

and 5 = 2xrv, = constant 

In terms of 7 and 6, the governing equations are 

with D/Dt = a p t  + V ,  a/ar + V ,  a/&. 

4. Why not study vortex line topology? 
Consider the instantaneous vorticity field in an axisymmetric flow with swirl. An 

arbitrary vortex line 9 is confined to one connected 6 = constant surface. Because of 
axisymmetry, all vortex lines on this surface have exactly the same shape as 2; i.e. 
2’ can be made to coincide with any other vortex line on the surface by an appropriate 
rotation about the z-axis. 

Each closed &contour in the meridional plane is a cross-section of a toroidal vortex 
surface. Let F be one of these surfaces. All vortex lines on Y obviously have exactly 
the same winding number W ( W is defined as the number of times a vortex line coils 
around the minor toroidal axis for each time it circles the z-axis). In the neighbourhood 
of Y, the dependence of W on 6 is continuous. Thus, either W is constant across 
surfaces, or surfaces with rational and irrational winding numbers are spaced infinitely 
close together. On surfaces with rational W, the vortex lines close on themselves, while 
on surfaces with irrational W, they do not. In fact, a single line fills the entire surface 
in the latter case. 

The implications are important, for in order to establish a ‘time-history’ of vortex 
lines in a viscous flow, there is only one meaningful way to proceed: to find a 
circulation-preserving velocity field uN in which the vortex lines are frozen. This 
velocity is necessariljr different from the material velocity; see Truesdell (1954, p. 86). 
Newcomb (1958) showed how such a virtual velocity can be found for the motion of 
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FIGURE 3. Schematic showing the local coordinate system ('p, 4) in the meridional plane. An 
axisymmetric vortex surface and a vortex line with W x 7 are also shown. 

magnetic lines of force in a conducting plasma. His analysis and results readily 
translate to the motion of vortex lines in a viscous fluid (Creene 1990). Under some 
circumstances, however, such a virtual velocity does not exist everywhere along a 
vortex line. One such case is when the vortex line closes on itself and, in addition, the 
line integral of u o  . V x o does not vanish; see Greene (1990). For axisymmetric flows 
with swirl, our above analysis of W shows, that such vortex lines are, in general, dense 
inside a toroidal vortex surface F. Hence our vN does not exist inside 9. In this sense, 
there are too many closed vortex lines in axisymmetric flows. 

This analysis shows, for example, that it is not possible to assign a time history to 
the vortex lines in a viscous axisymmetric vortex ring with swirl. To highlight this 
problem, by way of example, we consider a thin vortex ring with a very large ring 
radius R, in a highly viscous flow. In this limit, the convective terms vanish, as do the 
diffusive terms proportional to 1 / r  in (9) and (10). The governing equations for we and 
5 thereby both reduce to the heat equation. A vortex ring with self-similar diffusion of 
wg and 6 is then described by 

where p is the radius in a local polar coordinate system @,$) in the meridional 
plane centred at the vortex core (figure 3), - t o  is the virtual origin of the classical 
Stokes vortex (1 l), and N is an integer. The meridional vorticity is om = w4e4 = 
- (1 / 2 ~ )  (a[/ap) e+; hence (12) yields 

N P W S  w -  
@ - R,(1 + t / to) '  

3-2 
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From (1 1) and (1 3), we obtain the winding number for a vortex line : 
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This expression has two interesting aspects. First, all vortex lines have the same 
winding number; by construction W = N at t = 0. Secondly, W decreases with time 
like l / ( t  + to ) ;  thus, the vortex lines continuously change their topology. W is rational 
when tlt,, is rational, and irrational otherwise. Therefore, the vortex lines are closed if 
and only if t l t ,  is rational. Note that the vortex lines constantly change their topology 
without any reconnection. Clearly, it cannot be meaningful to track such vortex lines 
(in their entirety) in time. 

We conclude that nested toroidal vortex surfaces, with the same winding number for 
all vortex lines on each individual surface, constitute a structurally unstable vortex line 
configuration - even though the perturbations are restricted to be axisymmetric. As 
our interest is in coherent aspects of the vorticity field, we do not focus on the vortex 
line topology. Instead, we examine the topology of the axisymmetric vortex surface. 

5. The virtual velocity field advecting axisymmetric vortex surfaces 
The dynamics of axisymmetric flows with swirl follow precisely the dynamical 

system framework described in $2: t is the Hamiltonian H ;  the meridional plane (r,z) 
is the phase plane; t is the bifurcation parameter p; flux is circulation of 0, = (w,, w ~ ) ;  
and islands are vortex structures consisting of nested axisymmetric vortex surfaces. 
This analogy with the dynamical system (1) shows that the level sets of 6 establish a 
time history of the axisymmetric vortex surfaces. In this section, we show that this time 
history allows us to introduce a virtual velocity field in which the motion of 
axisymmetric vortex surfaces is frozen. 

Consider a material circle V in a plane normal to the z-axis and centred at r = 0. The 
circulation along $? is given by 

where rv is the radius of V. Owing to axisymmetry, '3 remains circular as it moves with 
the material velocity v.  Thus, it readily follows from (9) that 

Now suppose that V is not material, but advected with some (axisymmetric) virtual 
velocity 6 = ( f i r ,  fro, f i Z ) .  In that case, the circulation of $? changes at the rate 

- a t  a t  at a6 
dr &. d r  az - t + v, - + v, - + (6, - 0,) -+ (0, - v,) - 
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In the last line, the first term is the effect of viscosity; the second is the effect of 'slip', 
i.e. the difference between virtual and material velocities. If these two effects balance, 
then the axisymmetric vortex surfaces are frozen in the virtual velocity field. Hence, we 
seek a it such that 

Clearly, a velocity parallel to the axisymmetric vortex surfaces does not change r,. 
Therefore, we impose the extra condition that it-v must be perpendicular to these 
surfaces, i.e. 

( f i , -Vr) - - ( i j z -Vz) -  = 0. az ar 

Equations (18) and (19) then determine the meridional component of it - v.  This system 
of equations has a unique solution if and only if the determinant (i3[/ar)2 + (at/i3z)2 = 
4n2r2(o,2 + W E )  is non-zero. In that case, we have 

Obviously, the azimuthal component is of no consequence; for simplicity, let BS = vo. 
The determinant is zero at the points of vanishing meridional vorticity. There the 

system (18), (19) either has no solutions or infinitely many solutions: no solutions when 
(iYLJar2) - ( l / r )  (ag/ar) + (a2.$3zz + 0 ; infinitely many when (i32[/i3rz) - ( l / r )  (a[ /ar)  f 
(3'~/i3z2) = 0. In the latter case, any (6,,6,) is a solution as every term in this system 
vanishes identically. 

Thus, corresponding to the motion of 5 level curves, there is a virtual velocity field. 
It exists almost everywhere, and the axisymmetric surfaces are frozen in it. Specifically, 
it exists where om is non-vanishing. There are, consequently, no topological changes in 
surfaces on which )om) += 0. Note that although the material velocity field is divergence 
free, the virtual velocity is not. Moreover, the virtual velocity is the material velocity 
plus a correction, the slip, which is small away from critical points. The slip is directed 
such that 6 is always annihilated at centres (see (20)). 'Hence, creation of 5 is not 
possible. 

6. Local analysis near typical nulls of the meridional vorticity 
There are important reasons for analysing the behaviour of the virtual velocity near 

an om null. Such a null is a critical point in the dynamical system (1). It is here that 
islands can change circulation (flux) through annihilation and reconnection. By 
examining the singular behaviour of the virtual velocity near a null, we demonstrate 
through appropriate limiting processes that the virtual velocity produces the correct 
rate of annihilation and reconnection, namely those rates already known from the 
dynamical system discussion in $2. This is particularly interesting because the virtual 
velocity must perform the cut-and-connect procedure shown in figure 1. 

about a null (ro,zo) of the meridional vorticity field For the Taylor expansion of 
(%' wz), 
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we simplify the notation by 

Hence, 6 -  tn is given locally by the quadratic form a(&)' + 2bSrSz + ~ ( S Z ) ~ .  The 
corresponding symmetric matrix is 

M = [" '1. 
b e  

We let (Sr, Sz) = (p cos 4, p sin $), so as to pinpoint the singular part of 6. From (20) 
we obtain 

Clearly, the virtual velocity is singular at (ro, zo) if and only if a+ c + 0. In that case, 
the singularity is I / p ;  this is the most singular that the virtual velocity can become at 
any null of w,. 

Now that the order of the singularity is known, (23) can be simplified by introducing 
different local coordinates so that M becomes diagonal. Note that M is symmetric 
and thus has real eigenvalues (A ,  and A,) and orthogonal eigenvectors (e, and e,). 
If b = 0, the matrix is already diagonal. If b + 0, we have 

7 (24) 
a+ c + ((a- e)2 + 4b2)i a + c - ((a - c ) ~  + 4~); 

2 , A, = 2 
A, = 

Let the corresponding unit eigenvectors be el and e",. Using these vectors as basis 
vectors in a new local coordinate system (xl,x2), the quadratic form (21) becomes 

(26) M X l ,  X Z )  = Ell + A1 x: + A 2  xi. 
In these coordinates the singular part of virtual velocity field (23) is 

When the eigenvalues have the same sign, the critical point is a centre for the 
meridional vorticity and a sink of nodal form for the virtual velocity (see (27) and 
figure 4a) .  At such a point, circulation of the meridional vorticity field is annihilated. 
The rate of annihilation R, (positive by definition) is determined by the singular part 
of the virtual velocity and the local quadratic form of 5. We have 

where T(x1,x2)  represents the time required for the virtual velocity field to carry an 
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FIGURE 4. &contours (---) and streamlines (-) of the slip 8 - u  are sketched near typical isolated 
nulls of the meridional vorticity field w,: (a) a centre for the [-contours is a nodal sink for the slip; 
(b)  a saddle for the <-contours is also saddle for the slip, but the separatrices are different. Also shown 
is the angle a between the 6-separatrices. 

object from location (xl,x,) to (0,O). All points on a given &contour have the same 
value of T. Therefore, T is most easily found by considering an object moving along 
one of the coordinate axes, say, the X1-axis. Thus, 

substitution into (28) yields 

R, = 24( l  +h,/h,)h,l = 2vlh,+A,l = 2vl~+cl .  (30) 

When the eigenvalues have opposite signs the critical point is a saddle for both the 
meridional vorticity and the virtual velocity (see figure 4b). Here the (-contours are 
split and rejoined as they approach the critical point, exactly as suggested by the 
intuitive cut-and-connect cartoon (figure 1). By considering the motion of an object 
along one of the axes, we find the rate of circulation transfer 

Note that R,,, is positive by definition. 
The virtual velocity results in exactly the same rates for change of circulation (flux) 

as the dynamical system approach in 52, because annihilation, as well as reconnection, 
occurs at the rate 2vla+cl, and 

Here we have used ag/arl, = a[/azl, = 0, and l o  indicates evaluation at the critical 
point. 
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For a saddle, the separatrices are locally the solutions to A$ x: = - A z  xi. Thus, one 
of the angles between the separatrices is a = 2 arctan (- Az/Al)5, whereby (27) yields the 
following expression for the velocities along the coordinate directions : 

On the basis of (33), we conclude that the virtual flow, and hence the circulation 
transfer, is always from the wide-angle to the narrow-angle sector of the saddle; see 
figure 4(b). In the special case a = ~ / 2 ,  there is no transfer and hence no reconnection. 

Often the narrow angle between the separatrices at a saddle point is very small, 
because the gradient of 5 in one principal direction (say the X,-direction) is much larger 
than that in the other (i.e. Ih,/A,l >> 1) .  The circulation transfer is then from the xl- 
direction to the X,-direction as shown in figure 4(b). At a small distance p from the 
saddle point, the slip velocities along the two principal directions are very different in 
magnitude; (33) allows us to express their ratio in terms of the narrow angle a :  

Thus, when a is small, [-contours depart from the saddle point much faster than they 
approach it. 

7. Analysis of numerical simulations 
We illustrate the theoretical framework outlined above by direct numerical 

simulations of the Navier-Stokes equations. In particular, we wish to demonstrate, 
beyond any doubt, the occurrence of vortex reconnection, as well as the creation and 
destruction of structurally stable topological structures (islands). In addition, we wish 
to emphasize that these phenomena can be followed in complete detail by 
computational means, using the analytical framework discussed above. The numerical 
method used for the simulations is an axisymmetric spectral algorithm with 
eigenfunctions of the curl operator as basis functions; for details see Virk, Melander 
& Hussain (1994). We discuss four different cases. In the first two, the initial conditions 
have been chosen so as to force annihilation and creation of a saddlexentre pair. This 
we accomplish by having the azimuthal vorticity dominate the dynamics. Hence, it is 
not our intention that these two simulations should represent a realistic flow. The third 
simulation, however, represents a realistic flow, namely the evolution of a vortex ring 
with swirl. This flow was not specifically designed to produce reconnection. The fourth 
simulation features an additional symmetry, which allows us to comment on the vortex 
line topology: a surprising line topology evolves from a very simple one. Contrary to 
the first two simulations, the interaction between meridional and azimuthal vorticity is 
very strong here. The specific initial conditions for all simulations are given in the 
Appendix. 

Case I :  centre-saddle annihilation. It is well known that two vortex rings without 
swirl can leap-frog. Moreover, if the separation is smaller than a critical value, the two 
rings pair. Intuitively, such pairing should also occur in the presence of weak swirl; in 
this case, 6 is essentially a passive scalar. We selected the initial w, as two rings that pair 
in the absence of swirl. 6 is chosen to be initially weak, and it has two peaks coinciding 
with the initial wo peaks. Thereby we anticipate the two (-peaks will merge into one 
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FIGURE 5. Evolution of wg for case I .  
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FIGURE 6. Evolution of the [-contours for case I. 

during the pairing of the rings. Figures 5 and 6 show that the desired effect was indeed 
achieved. The initial trajectories om (figure 6) feature exactly the same topology as in 
figure 2(a) : namely one saddle (B) ,  two centres ( A  and C), and three structurally stable 
islands (3A, 3, and gABC).  Initially the saddle has no vorticity, because wo is initially 
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FIGURE 7. Evolution of the island circulations for case I. Note the discontinuous 
behaviour of r(3,) at t = tCTit % 9.5. 

zero there. Hence, B does not initially correspond to a circular vortex line of the full 
three-dimensional vorticity field. However, B at once acquires azimuthal vorticity 
through diffusion. For t > 0, the saddle is, therefore, a point on a circular vortex line. 

The three islands are present until a bifurcation of the phase portrait occurs at 
t = tcriL = 9 (see figure 7). Prior to this bifurcation, r(3,) and r(&) change by two 
different processes : annihilation at A and C, and reconnection at B. It follows from our 
local analysis in $6 that the rates of circulation transfer from SA and 3, to 3,,, are 
equal. Moreover, r(3,,J changes by only one process, namely reconnection at B, as 
3,,, has no centres in its interior. Thus, we conclude: 

(i) the circulation acquired by 3,,c through reconnection equals [,(f) - [ , ( O )  ; 
(ii) the circulation lost by 3., (or SC) through reconnection equals &(t) - &(O) ; 

(iii) the circulation lost by 3, through annihilation at A equals 

(iv) the circulation lost by 3, through annihilation at C equals 

The circulation of each island is easily obtained from 6: r(3,) = [, - t;,, T(3,J = 
[c-[B,  and r(3,B,) = [,. Figure 7 shows the circulation of each island during the 
evolution. Immediately from the beginning, there is reconnection of axisymmetric 
vortex surfaces at B, and circulation is transferred from 3, and 3, to 3,,,. Around 
t = 7 this transfer gradually comes to a halt, and the reconnection reverses, so that 
circulation is transferred from gA,, rather than to 3,,,. This reversal occurs because 
the angle a between the separatrices at B increases through n/2, whereby the virtual 

f , ( o ) + [ , ( o ) - 5 A ( t ) - t ; B ( t ) ;  

[do) + [ B ( O )  - [C(')  - EB(')' 
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FIGURE 8. (a) Vector plot of the virtual velocity field at t = 5. (b)  Corresponding streamlines of the 
slip (6-u).  Within the shaded region the slip is directed away from the nodal points; in the white 
region, toward the nodal points. Contours of 5 are overlaid in both figures. 

velocity reverses its direction near B (see (33)). Meanwhile, circulation of 3, and 3, is 
annihilated rather quickly at A and B. 

The axisymmetric vortex surfaces are frozen in the virtual velocity field except at 
critical points. While the slip velocity is unbounded at the critical points, it is rather 
small everywhere else. Consequently, the virtual velocity looks like the material 
velocity in most of the flow region; figure 8(a)  shows the virtual velocity field at 
t = 5.  The slip velocity (figure 8b) is more informative regarding annihilation and 
reconnection than the virtual velocity. Figure 8 (b) has several interesting features. We 
observe that the slip velocity has nodal points at A and C and one saddle at B. 
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FIGURE 9. Evolution of o, for case 11. 

Moreover, the direction of slip is toward the singular nodes in some areas (the white 
regions in figure 8 b) and away from nodes in other areas (the shaded regions in figure 
8 b). Thus, inside the white regions, the [-contours contract towards the nodal points; 
the [-contours expand in the shaded region. As the flow evolves, the white regions 
become larger, merge into one, and eventually engulf the saddle point B, so as to 
reverse the circulation transfer at B. 

The bifurcation at t = tcrit is a centre-saddle annihilation. Afterwards, only one 
island remains. This topological change from three islands to one is clearly evident in 
figure 6. We observe that the island 3, diminishes in size much quicker than 3,. More 
precisely, r(3,) decays faster than T(3,);  see figure 7. At t = tcrit,  r(3,) vanishes, 
while r(3,) is still finite. Hence, there is a catastrophic change in the topology at 
t = terzt. Specifically, 3, merges with 3,,, as the separatrices dividing these islands 
disappear along with B. The surviving island is then 3,, which was spontaneously 
extended to the entire meridional plane. Consequently, reconnection at B terminates 
exactly at t = tCrtt,  and there is a discontinuity in T(3,); see figure 7. The bifurcation 
also affects the virtual velocity field 6, for as C and B disappear, 6 loses two 
singularities (see (20)). As the bifurcation takes place, two circular vortex lines 
(corresponding to B and C) of the full three-dimensional vorticity field spontaneously 
disappear. Note that this disappearance is not due to the cancellation of anti-parallel 
vorticity, for the two vortex lines both have positive q,. 

Case 11; centre-saddle creation. Our initial condition, once again, consists of two 
vortex rings with weak swirl. This time we do not want the rings to pair. Instead we 
use the strain-rate field between two corotating rings to split a single g-peak into two. 
The simulation, shown in figure 9 and 10, accomplishes just that. 

Two bifurcations have occurred prior to t = 18; see figure 10. The first creates a 
centre (C) and a saddle (B).  r(3,) remains continuous during this bifurcation, because 
the new critical points emerge exactly at A .  Hence, this topological change is not 
catastrophic. The second bifurcation creates a new saddle (D)  and a new centre ( E )  
above A ;  see frame t = 18. This saddle-centre pair emerges some distance away from 
A ,  although still inside the separatrix 6,. Thereby 3, splits up into three islands: 3, 
(now bounded by a separatrix emerging from D),  3,, and 3,,,. As a result of this 
bifurcation, r(3,) decreases spontaneously by a finite amount, which then becomes 
r(sADE). Hence, the second bifurcation is a catastrophic change of topology, i.e. a new 
island is born with finite circulation. 

r(3,) is zero when the island is created by the second bifurcation. It then increases, 
reaches a maximum, and starts decreasing. By t = 30, E and D have disappeared again, 
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FIGURE 10. Evolution of the &contours for case 11. Also shown is a schematic 
of the first bifurcation. 

indicating that a third bifurcation has taken place between t = 26 and 30 (figure 10). 
At the time of bifurcation, r(3,) vanishes, but is still finite. Since 3,,, 
disappears with finite circulation, the third bifurcation is also a catastrophic topology 
change. 

Case 111: centre-saddle creation in a ring with swirl. Reconnection and topological 
changes in the vorticity field also occur in realistic axisymmetric flows. As an example, 
we mention the evolution of an axisymmetric ‘partially polarized’ vortex ring. The 
particular flow simulation used is case D in Virk et al. (1 994) ; it is discussed in detail 
in that paper for other reasons. For our purposes, it suffices to say that the ring has 
significant swirl, i.e. 6 is not small and plays an active dynamical role. The initial k- 
distribution (figure 11 a) is a single-island configuration. During the evolution, the ring 
sheds a tail, and a bifurcation occurs to a three-island configuration, qualitatively 
similar to that in figure 2(a). Figure 11 (b) shows the &distribution at a late stage in the 
evolution, and figure 11 (c)  shows the corresponding vorticity magnitude IwI. Note that 
(34) applies to this surface reconnection, for the angle ct between the separatrices at the 
saddle point is very narrow. 

Comparison of figures 11 (b) and 11 (c) leads one to chilling reflections: a total failure 
of traditional diagnostic techniques. The vortical structure appears vastly different in 
these two figures. In fact, the only common features is the leading vortex ring, called 
the head. Judging just on the basis of figure 11 (c), one would say that there are either 
one or two vortex structures, depending on whether the tail is regarded as connected 
or separated from the head. That there are, in fact three structures (islands) would 
escape detection, as would their location and extent. Moreover, the location of vortex 
reconnection would be totally misjudged (that is, if one even suspected the occurrence 
of reconnection). This shows that we need to be expressly cautious while analysing 
visualizations of fully three-dimensional vortex structures in terms of surfaces of 
constant vorticity magnitude. Note that surfaces of constant vorticity magnitude are 
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FIGURE 1 1 .  (a) Initial <-contours for case 111; (b) &contours at a late stage in the evolution; 
( c )  plot of the total vorticity magnitude at the time as (b). 

r 

FIGURE 12. (a) Initial [-contours for case IV; (b) 7-contours at a late stage in the evolution; 
(c )  [-contours at the time as (b). 

commonly used in the literature (e.g. Boratav, Pelz & Zabusky 1992), because vortex 
surfaces are extremely difficult to compute and bundles of vortex lines appear too 
messy. Thus the topology of the vorticity field must be approached with extreme care 
in all but the very simplest flows. 

Case ZV: Topology changes constrained by additional symmetry. The initial condition 
for this flow simulation is a jet which has been bent into a circle around the z-axis. That 
is, the initial condition consists of pure swirl (wo = 0) with a (-distribution as shown in 
figure 12(a). Although there is no initial azimuthal vorticity, it is quickly generate by 
the coupling term in the evolution equation for 7, (10). The generated azimuthal 
vorticity forms a vortex dipole which shoots radially outward (figure 12b). In the 
process, the &-distribution is partly carried along ; but meanwhile it deforms strongly, 
and steep &gradients develop in various places (figure 12c), giving rise to significant 
diffusion. This type of flow has been simulated for the Euler equations by Grauer & 
Sideris (1991) and Siggia & Pumir (1992) with the aim of finding a finite-time 
singularity. Virk et al. (1994) simulated the flow for the Navier-Stokes equations at 
Re = 800 as an example of spatial segregation of left and right polarized vorticity. 
We study the topology of the vorticity field in the latter simulation here. 

Initially there is only one island (3J corresponding to a single critical point A ;  see 
figure 12(a). Later (figures 12c and 13c), there are five critical points: three centres 
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FIGURE 13. Schematic of the island structure during the evolution of case IV: (a) initial; 
(b) after the first bifurcation; (c )  after the second bifurcation. 

(B, C and E )  and two saddles ( A  and D). (Note that A and D are not simple saddles 
of the type discussed in 96, but saddles with first or higher order of tangency.) 
Correspondingly, there are five islands: 3,, 3c, gABC, 3, and 3,,,,,. This 
configuration results from two bifurcations. The first splits the original centre A into 
a saddle ( A )  and two centres ( B  and C); see figure 13b. After this bifurcation, the two 
centres gradually move away from the line of symmetry. The second bifurcation creates 
D and E on the line of symmetry, but away from A (figure 13 c).  Of these two topology 
changes only the second is catastrophic. 

The symmetry (figures 12u-c) has some interesting implications. The fact that [ is 
even in z and w, is odd in z implies that vortex lines intersecting z = 0 (the symmetry 
plane) are closed with winding number W = 03 ; see figure 14. (Note that the vortex 
lines are not circular, except at t = 0.) Consequently, all vortex lines in gABC, 3,, and 
3,,,,, are closed with infinite winding number; see figure 14(c). This is also true for 
all vortex lines in the original island 3, (figure 14a). Moreover, A ,  D and E correspond 
to circles of nulls of the full three-dimensional vorticity field, for w, = 0 on the 
symmetry plane. In the other two islands (3, and 3c), the vortex lines are not 
constrained by the symmetry, and hence obey the generic axisymmetric scenario 
described in 4 4, namely that W varies continuously across nested axisymmetric vortex 
surfaces. This observation makes the first bifurcation, which generates 3, and 3,, very 
interesting. Before this bifurcation the vorticity field consists of vortex lines which are 
all unknotted, that is, no two lines are linked (figure 14u). After the first bifurcation, 
however, the lines are all knotted (figure 14b): the lines in ZABC link with all lines in 
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FIGURE 14. Schematic of the vortex line topology in case IV : (a) initial, all lines closed and unlinked ; 
(b) after the first bifurcation, all lines link with other; (c) after the second bifurcation, some lines, 
namely those in island E (see figure 13c), are unlinked from all other lines. 

3B and 3,; the lines in 3, link with the circular line B ;  and the lines in 3, link with 
the circular line C. After the second bifurcation, some vortex lines are again unknotted, 
namely those in island 3, (figure 14c). Although such a collection of closed vortex lines 
is structurally unstable (e.g. add a small positive w, component in the support of 6 and 
lines will no longer be closed), the present flow simulation is a prime example of how 
vortex lines can link and unlink in a viscous flow. 
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8. Discussion and conclusions 
In this paper we have examined a vortex reconnection different from that previously 

studied. The present reconnection takes place along a closed vortex line, whereas the 
literature deals with reconnection at nulls of the three-dimensional vorticity field. We 
have examined the reconnection in the idealized setting of axisymmetric viscous flows 
with all three vorticity components. By insisting on structural stability with respect to 
axisymmetric perturbations, we have shown that the reconnection must necessarily be 
studied in terms of axisymmetric vortex surfaces rather than vortex lines. 

Viscous axisymmetric vortex dynamics is viewed as a global bifurcation problem for 
the phase portrait of a dynamical system. The dynamical system is Hamiltonian with 
the azimuthal circulation 5 as the Hamiltonian, the meridional plane being the phase 
plane, the vector lines of the meridional vorticity field (the meridional cross-sections of 
the axisymmetric vortex surfaces) representing the phase plane trajectories, and with 
time as the bifurcation parameter. The variation of the Hamiltonian with the 
bifurcation parameter is extremely complicated, for it is governed by the partial 
differential equations of the fluid flow. 

By recasting the viscous axisymmetric vortex dynamics in terms of a global 
bifurcation problem for a Hamiltonian system, we have given the concept of 
reconnection in axisymmetric flows a precise meaning in terms of circulation (flux) 
transfer between structurally stable topological entities (islands in MHD-parlance) in 
the phase plane. Moreover, we have given precise meanings to the concepts of 
circulation annihilation, and spontaneous and catastrophic topology changes of 
axisymmetric vortex surfaces. The dynamical system approach allows us to identify 
exactly the occurrence and location of reconnection, annihilation, etc. Quantitative 
measures associated with these concepts have also been introduced, viz. rate of 
reconnection R,,, and rate of annihilation R,. 

The dynamical system approach provides a self-consistent, physically meaningful, 
and simple way of tracking individual axisymmetric vortex surfaces in time, even 
though the flow is viscous. We have shown that this time history is equivalent to the 
advection of the surfaces by a uniquely defined (divergent) virtual velocity field. This 
velocity field is easy to calculate, but has singularities in the meridional plane. The 
motion of the axisymmetric vortex surfaces is frozen in the virtual velocity field except 
where it is singular. It is at the exact locations of these singularities that reconnection 
and annihilation take place. By means of a local analysis of the singularities in the 
virtual velocity, we show that it results in the correct rates of reconnection and 
annihilation (the correct rates are obvious through the dynamical system approach). 
Hence, the qualitative cut-and-connect procedure shown in figure 1, and prevalent in 
the literature, becomes correct and quantitative in terms of the virtual velocity field. 
The global changes in the axisymmetric vortex surface topology are also directly 
related to the virtual velocity field, namely through the appearance and disappearance 
of singularities in this velocity. 

The applicability of this theoretical framework to well-resolved computationally 
determined flow fields has been demonstrated by four examples. Occurrence of all of 
the theoretically discussed phenomena (reconnection, annihilation, reconnection 
reversal, spontaneous topology changes, and catastrophic topology changes) have been 
identified in these computed flows. Except for the usual requirement of well-resolved 
flow fields, there are no computational difficulties in applying our concepts to 
axisymmetric flows. 

At this point, it is appropriate to mention that Kida & Takaoka (1991) have 
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introduced a quantity D which they call the 'degree of vortex reconnection'. D is 
defined as D = vw - do. They argue that reconnection occurs where ID( is large. Note 
that D = 0 is a necessary and sufficient condition for vortex lines to be material lines 
(Truesdell 1954). Further, the authors claim that D must be non-zero where 
reconnection occurs. This is obviously not true for reconnections occurring at  a 
vorticity null. Our case IV serves as an unusual but clear counter example. There are 
a number of other problems with Kida & Takaoka's argument. For example, D =l= 0 
means slippage of vortex lines, but it has no bearing on the topology of vortex lines. 
Vortex lines slip (i.e. the virtual velocity differs from the fluid velocity) almost 
everywhere, while reconnection occurs only at certain locations. Moreover, their claim 
that large D locates reconnection is difficult to accept. Thus, D does not identify where 
reconnection occurs, does not indicate whether reconnection actually occurs, and does 
not quantify the process. Our obvious conclusion is that D is irrelevant for vortex 
reconnection. 

A final comment about the extensive recent numerical attempts (e.g. Pumir & Siggia 
1992; Kerr 1992; Caflisch et al. 1992) to locate a finite-time singularity in the three- 
dimensional Euler equations or even the Navier-Stokes equations at high Reynolds 
numbers is in order. It is a delicate and very difficult task to provide convincing 
numerical evidence for such a singularity, for there is usually plenty of room for doubt 
due to a variety of sources of numerical errors. Since vortex reconnection problems in 
the limit of infinite Reynolds number seem to be the prime singularity candidate (e.g. 
see the above references) we suggest that the numerics should be validated in flows 
where there is no singularity in either the infinite Reynolds number limit or in the 
corresponding Euler flow. Although the present paper does not in any way address the 
singularity issue, it does naturally suggest a class of test problems without singularities. 
Namely, consider a flow described by equations (4)-(6). In this two-dimensional flow, 
reconnection can occur for the in-plane vorticity (w5,wy)  in a similar fashion as for 
the meridional vorticity in axisymmetric flows with swirl. However, for a two- 
dimensional flow as represented by (4)-(6) there is a strong and well known analytical 
result. Namely, if w, and w are initially C" functions of x and y ,  and appropriate 
boundary conditions are given in the limit x2 + y 2  + 03, then w, and w remain C" 
functions for all time. The in-plane vorticity, given by (4), is therefore also C" for all 
times. This result is valid for all values of v > 0. Thus, for this type of reconnection 
problem, there is no finite-time singularity. Interestingly, a referee informed us that 
plasma physicists have long appreciated that reconnection does not imply a singularity; 
see Furth (1985). 

We are grateful to Dr D. Virk for his assistance. This work is funded by the Air 
Force Office of Scientific Research under grant F496620-92-5-0200. 

Appendix. Initial conditions 
All simulations are performed using the axisymmetric spectral code of Virk et al. 

(1994). This algorithm allows a vorticity field o to be decomposed into its left- (a,) and 
right-hand components (0,) (we is a linear combination of eigenfunctions of the curl 
operator corresponding to positlve eigenvalues ; oL is a superposition of eigenmodes 
corresponding to negative eigenvalues). In this way a partially polarized vorticity is 
constructed as oR + (1 - x )  oL, where the constant x is the polarization parameter. The 
code uses N Bessel functions in the radial direction and M Fourier modes in the axial 
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direction. The computational domain has radial extent L and axial extent H .  The 
unpolarized vortex rings from which the initial conditions are constructed all have the 
following profile for the azimuthal vorticity : 

wo exp ( - 4x/ (  1 - x')) exp (4x4 + 4x6 + 4x7,  0 < x < I .  (A 1) 
The parameters describing the initial conditions are : the ring radius R ,  the core radius 
(r, the axial position of the ring Z ,  the peak vorticity of the unpolarized ring wo, and 
the polarization parameter x. We have : 

Case I: N =  100, M = 128, L = 8, H = 8, Re = 800, 

Case 11: N = 100, M = 192, L = 20, H = 30, Re = 500, 
C T ~ = C T ~ = O . ~ ,  R l=R,=2.0 ,  Z,-Z1=0.8, 0 , - , ~ = ~ ~ ~ = 2 7 ,  , ~ = 0 . 8 .  

f l 1 = u 2 = 0 . 4 ,  R , = 3 ,  R , = 7 ,  Z,-Z,=O, w ~ ~ = w ~ ~ = ~ ,  x = l ;  
the &distribution has profile (A 1) in an ellipse with a = 3, b = 1.5, 
Re = 5 and to = 2.n x 0.63. 

Case 111: N =  100, M = 192, L = 20, H = 30, Re = 800, u = 0.4, R = 2.0, 
W =  20, x =0.5. 

Case IV : as case I l l  except that x = - 1. 
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